
Resonance
In mechanical systems, resonance is a
phenomenon that only occurs when
the frequency at which a force is
periodically applied is equal or nearly
equal to one of the natural frequencies
of the system on which it acts. This
causes the system to oscillate with
larger amplitude than when the force
is applied at other frequencies.[3]

Frequencies at which the response
amplitude is a relative maximum are
also known as resonant frequencies
or resonance frequencies of the
system.[3] Near resonant frequencies,
small periodic forces have the ability
to produce large amplitude
oscillations, due to the storage of
vibrational energy.

In other systems, such as electrical or optical, phenomena occur which are described as resonance but depend on the interaction
between different aspects of the system, not on an external driver.

For example, electrical resonance occurs in a circuit with capacitors and inductors because the collapsing magnetic field of the
inductor generates an electric current in its windings that charges the capacitor, and then the discharging capacitor provides an
electric current that builds the magnetic field in the inductor. Once the circuit is charged, the oscillation is self-sustaining, and
there is no external periodic driving action. This is analogous to a mechanical pendulum, where mechanical energy is converted
back and forth between kinetic and potential, and both systems are forms of simple harmonic oscillators.

In optical cavities, light confined in the cavity reflects back and forth multiple times. This produces standing waves, and only
certain patterns and frequencies of radiation are sustained, due to the effects of interference, while the others are suppressed by
destructive interference. Once the light enters the cavity, the oscillation is self-sustaining, and there is no external periodic driving
action.

Some behavior is mistaken for resonance but instead is a form of self-oscillation, such as aeroelastic flutter, speed wobble, or
Hunting oscillation. In these cases, the external energy source does not oscillate, but the components of the system interact with
each other in a periodic fashion.[4]

Overview

Examples
Tacoma Narrows Bridge
International Space Station

Increase of amplitude as damping decreases and frequency approaches
resonant frequency of a driven damped simple harmonic oscillator.[1][2]
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Resonance occurs when a system is able to store and easily transfer energy between two or more different storage modes (such as
kinetic energy and potential energy in the case of a simple pendulum). However, there are some losses from cycle to cycle, called
damping. When damping is small, the resonant frequency is approximately equal to the natural frequency of the system, which is
a frequency of unforced vibrations. Some systems have multiple, distinct, resonant frequencies.

Resonance phenomena occur with all types of vibrations or waves: there is mechanical resonance, acoustic resonance,
electromagnetic resonance, nuclear magnetic resonance (NMR), electron spin resonance (ESR) and resonance of quantum wave
functions. Resonant systems can be used to generate vibrations of a specific frequency (e.g., musical instruments), or pick out
specific frequencies from a complex vibration containing many frequencies (e.g., filters).

The term resonance (from Latin resonantia, 'echo', from resonare, 'resound') originates from the field of acoustics, particularly
observed in musical instruments, e.g., when strings started to vibrate and to produce sound without direct excitation by the player.

A familiar example is a playground swing, which acts as a pendulum. Pushing a
person in a swing in time with the natural interval of the swing (its resonant
frequency) makes the swing go higher and higher (maximum amplitude), while
attempts to push the swing at a faster or slower tempo produce smaller arcs. This
is because the energy the swing absorbs is maximized when the pushes match
the swing's natural oscillations.

Resonance occurs widely in nature, and is exploited in many manmade devices.
It is the mechanism by which virtually all sinusoidal waves and vibrations are
generated. Many sounds we hear, such as when hard objects of metal, glass, or
wood are struck, are caused by brief resonant vibrations in the object. Light and
other short wavelength electromagnetic radiation is produced by resonance on an
atomic scale, such as electrons in atoms. Other examples of resonance:

Timekeeping mechanisms of modern clocks and watches, e.g., the
balance wheel in a mechanical watch and the quartz crystal in a
quartz watch
Tidal resonance of the Bay of Fundy
Acoustic resonances of musical instruments and the human vocal tract

Overview

Examples

Pushing a person in a swing is a
common example of resonance. The
loaded swing, a pendulum, has a
natural frequency of oscillation, its
resonant frequency, and resists being
pushed at a faster or slower rate.
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Shattering of a crystal wineglass when exposed to a musical tone of the right pitch (its resonant frequency)
Friction idiophones, such as making a glass object (glass, bottle, vase) vibrate by rubbing around its rim with a
fingertip
Electrical resonance of tuned circuits in radios and TVs that allow radio frequencies to be selectively received
Creation of coherent light by optical resonance in a laser cavity
Orbital resonance as exemplified by some moons of the solar system's gas giants
Material resonances in atomic scale are the basis of several spectroscopic techniques that are used in
condensed matter physics

Electron spin resonance
Mössbauer effect
Nuclear magnetic resonance

The dramatically visible, rhythmic twisting that resulted in the 1940 collapse of "Galloping Gertie", the original Tacoma Narrows
Bridge, is mistakenly characterized as an example of resonance phenomenon in certain textbooks.[3] The catastrophic vibrations
that destroyed the bridge were not due to simple mechanical resonance, but to a more complicated interaction between the bridge
and the winds passing through it—a phenomenon known as aeroelastic flutter, which is a kind of "self-sustaining vibration" as
referred to in the nonlinear theory of vibrations. Robert H. Scanlan, father of bridge aerodynamics, has written an article about
this misunderstanding.[4]

The rocket engines for the International Space Station (ISS) are controlled by an autopilot. Ordinarily, uploaded parameters for
controlling the engine control system for the Zvezda module make the rocket engines boost the International Space Station to a
higher orbit. The rocket engines are hinge-mounted, and ordinarily the crew doesn't notice the operation. On January 14, 2009,
however, the uploaded parameters made the autopilot swing the rocket engines in larger and larger oscillations, at a frequency of
0.5 Hz. These oscillations were captured on video, and lasted for 142 seconds.[5]

Mechanical resonance is the tendency of a mechanical system to absorb more energy
when the frequency of its oscillations matches the system's natural frequency of vibration
than it does at other frequencies. It may cause violent swaying motions and even
catastrophic failure in improperly constructed structures including bridges, buildings,
trains, and aircraft. When designing objects, engineers must ensure the mechanical
resonance frequencies of the component parts do not match driving vibrational frequencies
of motors or other oscillating parts, a phenomenon known as resonance disaster.

Avoiding resonance disasters is a major concern in every building, tower, and bridge
construction project. As a countermeasure, shock mounts can be installed to absorb
resonant frequencies and thus dissipate the absorbed energy. The Taipei 101 building
relies on a 660-tonne pendulum (730-short-ton)—a tuned mass damper—to cancel
resonance. Furthermore, the structure is designed to resonate at a frequency that does not
typically occur. Buildings in seismic zones are often constructed to take into account the

Tacoma Narrows Bridge

International Space Station
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Mechanical and acoustic resonance

School resonating mass
experiment
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oscillating frequencies of expected ground motion. In addition, engineers designing objects having engines must ensure that the
mechanical resonant frequencies of the component parts do not match driving vibrational frequencies of the motors or other
strongly oscillating parts.

Clocks keep time by mechanical resonance in a balance wheel, pendulum, or quartz crystal.

The cadence of runners has been hypothesized to be energetically favorable due to resonance between the elastic energy stored in
the lower limb and the mass of the runner.[6]

Acoustic resonance is a branch of mechanical resonance that is concerned with the mechanical vibrations across the frequency
range of human hearing, in other words sound. For humans, hearing is normally limited to frequencies between about 20 Hz and
20,000 Hz (20 kHz),[7] Many objects and materials act as resonators with resonant frequencies within this range, and when struck
vibrate mechanically, pushing on the surrounding air to create sound waves. This is the source of many percussive sounds we
hear.

Acoustic resonance is an important consideration for instrument builders, as most acoustic instruments use resonators, such as the
strings and body of a violin, the length of tube in a flute, and the shape of, and tension on, a drum membrane.

Like mechanical resonance, acoustic resonance can result in catastrophic failure of the object at resonance. The classic example
of this is breaking a wine glass with sound at the precise resonant frequency of the glass, although this is difficult in practice.[8]

Electrical resonance occurs in an electric circuit at a particular resonant
frequency when the impedance of the circuit is at a minimum in a series
circuit or at maximum in a parallel circuit (usually when the transfer function
peaks in absolute value). Resonance in circuits are used for both transmitting
and receiving wireless communications such as television, cell phones and
radio.[9]

An optical cavity, also called an optical resonator, is an arrangement of
mirrors that forms a standing wave cavity resonator for light waves. Optical
cavities are a major component of lasers, surrounding the gain medium and
providing feedback of the laser light. They are also used in optical
parametric oscillators and some interferometers. Light confined in the cavity
reflects multiple times producing standing waves for certain resonant
frequencies. The standing wave patterns produced are called "modes".
Longitudinal modes differ only in frequency while transverse modes differ
for different frequencies and have different intensity patterns across the
cross-section of the beam. Ring resonators and whispering galleries are
examples of optical resonators that do not form standing waves.

Different resonator types are distinguished by the focal lengths of the two mirrors and the distance between them; flat mirrors are
not often used because of the difficulty of aligning them precisely. The geometry (resonator type) must be chosen so the beam
remains stable, i.e., the beam size does not continue to grow with each reflection. Resonator types are also designed to meet other
criteria such as minimum beam waist or having no focal point (and therefore intense light at that point) inside the cavity.

Electrical resonance

Animation illustrating electrical
resonance in a tuned circuit, consisting
of a capacitor (C) and an inductor (L)
connected together. Charge flows back
and forth between the capacitor plates
through the inductor. Energy oscillates
back and forth between the capacitor's
electric field (E) and the inductor's
magnetic field (B).
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Optical cavities are designed to have a very large Q factor.[10] A beam reflects a large number of times with little attenuation—
therefore the frequency line width of the beam is small compared to the frequency of the laser.

Additional optical resonances are guided-mode resonances and surface plasmon resonance, which result in anomalous reflection
and high evanescent fields at resonance. In this case, the resonant modes are guided modes of a waveguide or surface plasmon
modes of a dielectric-metallic interface. These modes are usually excited by a subwavelength grating.

In celestial mechanics, an orbital resonance occurs when two orbiting bodies exert a regular, periodic gravitational influence on
each other, usually due to their orbital periods being related by a ratio of two small integers. Orbital resonances greatly enhance
the mutual gravitational influence of the bodies. In most cases, this results in an unstable interaction, in which the bodies
exchange momentum and shift orbits until the resonance no longer exists. Under some circumstances, a resonant system can be
stable and self-correcting, so that the bodies remain in resonance. Examples are the 1:2:4 resonance of Jupiter's moons
Ganymede, Europa, and Io, and the 2:3 resonance between Pluto and Neptune. Unstable resonances with Saturn's inner moons
give rise to gaps in the rings of Saturn. The special case of 1:1 resonance (between bodies with similar orbital radii) causes large
Solar System bodies to clear the neighborhood around their orbits by ejecting nearly everything else around them; this effect is
used in the current definition of a planet.

Nuclear magnetic resonance (NMR) is the name given to a physical resonance
phenomenon involving the observation of specific quantum mechanical magnetic
properties of an atomic nucleus in the presence of an applied, external magnetic field.
Many scientific techniques exploit NMR phenomena to study molecular physics, crystals,
and non-crystalline materials through NMR spectroscopy. NMR is also routinely used in
advanced medical imaging techniques, such as in magnetic resonance imaging (MRI).

All nuclei containing odd numbers of nucleons have an intrinsic magnetic moment and
angular momentum. A key feature of NMR is that the resonant frequency of a particular
substance is directly proportional to the strength of the applied magnetic field. It is this
feature that is exploited in imaging techniques; if a sample is placed in a non-uniform
magnetic field then the resonant frequencies of the sample's nuclei depend on where in the
field they are located. Therefore, the particle can be located quite precisely by its resonant
frequency.

Electron paramagnetic resonance, otherwise known as electron spin resonance (ESR), is a
spectroscopic technique similar to NMR, but uses unpaired electrons instead. Materials for
which this can be applied are much more limited since the material needs to both have an unpaired spin and be paramagnetic.

The Mössbauer effect is the resonant and recoil-free emission and absorption of gamma ray photons by atoms bound in a solid
form.

Resonance in particle physics appears in similar circumstances to classical physics at the level of quantum mechanics and
quantum field theory. However, they can also be thought of as unstable particles, with the formula above valid if Γ is the decay
rate and Ω replaced by the particle's mass M. In that case, the formula comes from the particle's propagator, with its mass
replaced by the complex number M + iΓ. The formula is further related to the particle's decay rate by the optical theorem.

Orbital resonance

Atomic, particle, and molecular resonance

NMR Magnet at HWB-NMR,
Birmingham, UK. In its
strong 21.2-tesla field, the
proton resonance is at
900 MHz.
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The exact response of a resonance, especially for frequencies far
from the resonant frequency, depends on the details of the physical
system, and is usually not exactly symmetric about the resonant
frequency, as illustrated for the simple harmonic oscillator above.
For a lightly damped linear oscillator with a resonance frequency
Ω, the intensity of oscillations I when the system is driven with a
driving frequency ω is typically approximated by a formula that is
symmetric about the resonance frequency:[11]

Where the susceptibility  links the amplitude of the oscillator
to the driving force in frequency space:[12]

The intensity is defined as the square of the amplitude of the
oscillations. This is a Lorentzian function, or Cauchy distribution,
and this response is found in many physical situations involving
resonant systems. Γ is a parameter dependent on the damping of the
oscillator, and is known as the linewidth of the resonance. Heavily
damped oscillators tend to have broad linewidths, and respond to a wider range of driving frequencies around the resonant
frequency. The linewidth is inversely proportional to the Q factor, which is a measure of the sharpness of the resonance.

In radio engineering and electronics engineering, this approximate symmetric response is known as the universal resonance
curve, a concept introduced by Frederick E. Terman in 1932 to simplify the approximate analysis of radio circuits with a range of
center frequencies and Q values.[13][14]

A physical system can have as many resonant frequencies as it has degrees of freedom; each degree of freedom can vibrate as a
harmonic oscillator. Systems with one degree of freedom, such as a mass on a spring, pendulums, balance wheels, and LC tuned
circuits have one resonant frequency. Systems with two degrees of freedom, such as coupled pendulums and resonant
transformers can have two resonant frequencies. As the number of coupled harmonic oscillators grows, the time it takes to
transfer energy from one to the next becomes significant. The vibrations in them begin to travel through the coupled harmonic
oscillators in waves, from one oscillator to the next.

Extended objects that can experience resonance due to vibrations inside them are called resonators, such as organ pipes, vibrating
strings, quartz crystals, microwave and laser cavities. Since these can be viewed as being made of many coupled moving parts
(such as atoms), they can have correspondingly many resonant frequencies. The vibrations inside them travel as waves, at an
approximately constant velocity, bouncing back and forth between the sides of the resonator. If the distance between the sides is
d, the length of a roundtrip is 2d. To cause resonance, the phase of a sinusoidal wave after a roundtrip must be equal to the initial
phase, so the waves reinforce the oscillation. So the condition for resonance in a resonator is that the roundtrip distance, 2d, be
equal to an integer number of wavelengths λ of the wave:

If the velocity of a wave is v, the frequency is f = vλ  so the resonant frequencies are:

"Universal Resonance Curve", a symmetric
approximation to the normalized response of a
resonant circuit; abscissa values are deviation
from center frequency, in units of center
frequency divided by 2Q; ordinate is relative
amplitude, and phase in cycles; dashed curves
compare the range of responses of real two-pole
circuits for a Q value of 5; for higher Q values,
there is less deviation from the universal curve.
Crosses mark the edges of the 3 dB bandwidth
(gain 0.707, phase shift 45° or 0.125 cycle).
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So the resonant frequencies of resonators, called normal modes, are equally spaced multiples of a lowest frequency called the
fundamental frequency. The multiples are often called overtones. There may be several such series of resonant frequencies,
corresponding to different modes of oscillation.

The Q factor or quality factor is a dimensionless parameter that describes how under-damped an oscillator or resonator is,[15] or
equivalently, characterizes a resonator's bandwidth relative to its center frequency.[16] Higher Q indicates a lower rate of energy
loss relative to the stored energy of the oscillator, i.e., the oscillations die out more slowly. A pendulum suspended from a high-
quality bearing, oscillating in air, has a high Q, while a pendulum immersed in oil has a low Q. To sustain a system in resonance
in constant amplitude by providing power externally, the energy provided in each cycle must be less than the energy stored in the

system (i.e., the sum of the potential and kinetic) by a factor of Q
2π. Oscillators with high-quality factors have low damping, which

tends to make them ring longer.

Sinusoidally driven resonators having higher Q factors resonate with greater amplitudes (at the resonant frequency) but have a
smaller range of frequencies around the frequency at which they resonate. The range of frequencies at which the oscillator
resonates is called the bandwidth. Thus, a high-Q tuned circuit in a radio receiver would be more difficult to tune, but would have
greater selectivity, it would do a better job of filtering out signals from other stations that lie nearby on the spectrum. High Q
oscillators operate over a smaller range of frequencies and are more stable. (See oscillator phase noise.)

The quality factor of oscillators varies substantially from system to system. Systems for which damping is important (such as
dampers keeping a door from slamming shut) have Q = 1

2. Clocks, lasers, and other systems that need either strong resonance or

high frequency stability need high-quality factors. Tuning forks have quality factors around Q = 1000. The quality factor of
atomic clocks and some high-Q lasers can reach as high as 1011[17] and higher.[18]

There are many alternate quantities used by physicists and engineers to describe how damped an oscillator is that are closely
related to its quality factor. Important examples include: the damping ratio, relative bandwidth, linewidth, and bandwidth
measured in octaves.

Acoustic resonance
Antiresonance
Center frequency
Cymatics
Damping
Driven harmonic motion
Earthquake engineering
Electrical resonance
Electric dipole spin resonance
Formant
Harmonic oscillator
Impedance
Limbic resonance

Nonlinear resonance
Parametric oscillator
Positive feedback
Q factor
Resonance disaster
Resonator
Schumann resonance
Simple harmonic motion
Stochastic resonance
Sympathetic string
Tuned circuit
Vibration

Q factor

See also
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